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Model Inference: a Universal Problem

Astronomers want to make predictions about the Universe using models

Y = f(θ)

Theorists: Derive forward model f  

Observers: Measure observations Y, infer parameters θ 

θ = 
f-1(Yobs)
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Model Inference: a Universal Problem

θ = 
f-1(Yobs)

Generally weʼd like to be able to interpret θ, and assess the confidence in our 
predictions from uncertainties of θ  

Bayesian inference provides a framework for this 
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Bayesian Inference: Overview

POSTERIOR LIKELIHOOD PRIOR

Can use Markov Chain Monte Carlo (MCMC) to evaluate posterior samples
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BAYES THEOREM

lnP(θ)  ∝  lnLike(θ)  +  lnPrior(θ)



Bayesian Inference: Challenges

But performing MCMC requires evaluating your likelihood function many times

Drawing sufficient nwalkers per dimension & drawing independent 
samples means computing many samples, and throwing many away

If your likelihood function is expensive, this inefficiency adds up!

(A likelihood that takes ~10s of seconds per model to run can end up taking 
~weeks-months to run an MCMC even on a cluster node) 
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ALABI: Active Learning for Accelerated Bayesian Inference

For models which are computationally expensive, we can approximate the posterior 
using a surrogate model

This can be done with two additional steps: Gaussian Process + Active Learning

lnP(θ)  ∝  lnLike(θ)  +  lnPrior(θ)  ≈  g(θ)
POSTERIOR LIKELIHOOD PRIOR GAUSSIAN PROCESS

SURROGATE MODEL
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Methods: Gaussian Process Surrogate Model

GAUSSIAN PROCESS (GP)

Assumes that neighboring points are correlated according to a kernel function

This kernel would then allow us to define our regression model as a probability 
distribution over functions, which has a Gaussian mean and covariance
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Highly correlated

Weakly correlated

xi - xj

xi - xj



Methods: Active Learning

N = 4 N = 6 N = 13

GP is a regression model trained on N data points
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g(
θ)

More training data → less prediction uncertainty, better prediction accuracy

New points efficiently selected using active learning algorithm - iteratively optimize picking points 
with high probability and high uncertainty (Kandasamy et al. 2017)



Methods: MCMC

alabi easily interfaces with two 
different MCMC samplers:

emcee (affine invariant sampler; 
Foreman-Mackey et al. 2013) 

dynesty (nested sampler; 
Speagle 2020)
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Applications

SCIENCE CASE: 

TRAPPIST-1: 7 exoplanet hosting star

5 parameter model for modeling stellar 
evolution + XUV luminosity using 
VPLanet (Barnes et al. 2020)

~4000 core hours → ~4 core hours
(weeks on cluster vs. hours on laptop)
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Fleming et al. 2020
See also Birky et al. 2021



Performance
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Fleming et al. 2018

GP surrogate model reduces MCMC 
computation time by orders of 
magnitude!

emcee only
alabi



Conclusions

alabi presents a promising way forward for performing Bayesian Inference with 
computationally expensive models (demonstrated ~1000x faster)

Future work: benchmark alabi on high dimensional problems, incorporate additional 
MCMC sampler compatibility (e.g. Hamiltonian MC)

alabi is an open source project and welcomes contributions from the community! 

https://github.com/jbirky/alabi
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Methods: Active Learning
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Methods: Active Learning
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Kandasamy et al. 2017

UTILITY FUNCTION

Favors selecting θ with high probability

Favors selecting θ with high uncertainty

Active learning optimizes ut(θ) for niter


