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Model Inference: a Universal Problem

Astronomers want to make predictions about the Universe using models

Theorists: Derive forward model f
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Model Inference: a Universal Problem
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Generally we'd like to be able to interpret 6, and assess the confidence in our
predictions from uncertainties of 6

Bayesian inference provides a framework for this



Bayesian Inference: Overview

BAYES THEOREM

Posterior Likelihood
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Prior |

Uncertainty Noise

INP(6) o< InLike(B) + [nPrior(6)

POSTERIOR LIKELIHOOD PRIOR

Can use Markov Chain Monte Carlo (MCMC) to evaluate posterior samples



Bayesian Inference: Challenges

But performing MCMC requires evaluating your likelihood function many times

Drawing sufficient nwalkers per dimension & drawing independent
samples means computing many samples, and throwing many away

If your likelihood function is expensive, this inefficiency adds up!

(A likelihood that takes ~10s of seconds per model to run can end up taking
~weeks-months to run an MCMC even on a cluster node)



ALABI: Active Learning for Accelerated Bayesian Inference

oc [nLike(B) + InPrior(0)

POSTERIOR LIKELIHOOD PRIOR GAUSSIAN PROCESS
SURROGATE MODEL
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For models which are computationally expensive, we can approximate the posterior
using a surrogate model

This can be done with two additional steps: Gaussian Process + Active Learning



Methods: Gaussian Process Surrogate Model

GAUSSIAN PROCESS (GP)

Assumes that neighboring points are correlated according to a kernel function
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This kernel would then allow us to define our regression model as a probability
distribution over functions, which has a Gaussian mean and covariance



Methods: Active Learning
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GP is a regression model trained on N data points
More training data - less prediction uncertainty, better prediction accuracy

New points efficiently selected using active learning algorithm - iteratively optimize picking points
with high probability and high uncertainty (Kandasamy et al. 2017)



Methods: MCMC

True function

alabi easily interfaces with two
different MCMC samplers:

emcee (affine invariant sampler;
Foreman-Mackey et al. 2013)

dynesty (nested sampler;
Speagle 2020)
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Applications

emcee: 1,000.000 forward model v\’;phlntinns

SCIENCE CASE:

TRAPPIST-1: 7 exoplanet hosting star Fleming et al. 2020

N See also Birky et al. 2021
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5 parameter model for modeling stellar
evolution + XUV luminosity using K
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Performance
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Fleming et al. 2018



Conclusions

alabi presents a promising way forward for performing Bayesian Inference with
computationally expensive models (demonstrated ~1000x faster)

Future work: benchmark alabi on high dimensional problems, incorporate additional
MCMC sampler compatibility (e.g. Hamiltonian MC)

alabi is an open source project and welcomes contributions from the community!

https://github.com/jbirky/alabi







Methods: Active Learning

True function

Motivation

Matern52Kernel surrogate BAPE function
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Methods: Active Learning

UTILITY FUNCTION

AMCIE

exp(2p:(0+) +

o7 (0+))(exp(07 (0+))

log P(0, Xobs)

x

P(Ga Xobs)

Kandasamy et al. 2017
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Favors selecting 6 with high probability
Favors selecting 8 with high uncertainty

Active learning optimizes ut(e) for niter



