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Planets Face Many Perils

* Flares

* Tidal Locking

* Orbital Oscillations

» Star’s Early Brightness

* Passing Stars

* Massive Volcanic Eruptions
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The Atmosphere: Water Photolysis and Hydrogen Escape  [{§'}§

How much water can high energy radiation from flares remove from planets? i T
oo OTOLYSIS HYDRODYNAMIC
= ESCAPE
&
Stars emit X-ray+UV light that can remove water
" o"

They photolyze (dissociate) water molecules
R’ 4 \ .?' +

TO = “Terrestrial Oceans” = Earth’s water mass)

d Hydrogen escapes, permanently removing water
"j CO( co 9 5 £ 3 { (In future slides:

- HYDROGEN
‘ OXYGEN |

SURFAGE  OCEAN ATMOSPHERE




The Atmosphere: Water Photolysis and Hydrogen Escape !§‘
How much water can high energy radiation from flares remove from planets? R
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In the worst case scenario, flares are responsible for 2 TO (44%) of a planet’s water loss
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The Interior: The Thermal/Magnetic/Volatile Evolution of Venus

How did Venus arrive at its current state if it has always had a stagnant 1id? Rudy Garcia

Space stellar Evolution (@ S0lar X-Ray, UV, visible radiation evolves; XUV destroys water

Atmospheric Escape 3/ Liberated hydrogen can escape to space

Surface warmed by sunlight and greenhouse radiation

Atmosphere o, gyq0ing ! 1 Grey radiative transfer model for H,O and CO»

w
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\ LU Volcanoes outgas HoO and CO»; H>O is pressure-dependent




The Interior: The Thermal/Magnetic/Volatile Evolution of Venus

How did Venus arrive at its current state if it has always had a stagnant 1id? Rudy Garcia

Space stellar Evolution (@l S0lar X-Ray, UV, visible radiation evolves; XUV destroys water
Atmospheric Escape 3/ Liberated hydrogen can escape to space
/5 Surface warmed by sunlight and greenhouse radiation

Atmosphere  ogassing i Grey radiative transfer model for H>O and CO»
* . 3 Volcanoes outgas H>O and CO»; H>O is pressure-dependent
Stagnant Weathering? susface Water?. Surface water allowed if surface temperate is in the right range
Lid o Doy . ®® Men ® O always reacts with surface; CO; reacts if surface water present
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The Interior: The Thermal/Magnetic/Volatile Evolution of Venus F‘

How did Venus arrive at its current state if it has always had a stagnant lid? Rudy Garcia
Space stellar Evolution (@l SOlar X-Ray, UV, visible radiation evolves; XUV destroys water
Atmospheric Escape 5 Liberated hydrogen can escape too pace
Surface warmed by sunlight and greenhouse radiation
Atmosphere o, gyq0ing i Grey radiative transfer model for H>O and CO»
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The Interior: The Thermal/Magnetic/Volatile Evolution of Venus

How did Venus arrive at its current state if it has always had a stagnant lid? Rudy Garcia
Space stellar Evolution (@ Solar X-Ray, UV, visible radiation evolves; XUV destroys water
Atmospheric Escape 3/ Liberated hydrogen can escape to space
Surface warmed by sunlight and greenhouse radiation
Atmosphere o, igassing i Grey radiative transfer model for H,O and CO»
® CO; ¢ (X ] g
* . Volcanoes outgas H>O and CO»; H2O is pressure-dependent
Stagnant Weathering? sufaceWaterz. Surface water allowed if surface temperate is in the right range
Hd st Doy, @ % Ment ® O always reacts with surface; CO: if surface water present
S Tre, . Intrusive Volcanism p 1 -
o Crustal thickness evolves with temperature and volatiles
Thermal Boundary Layer e o (&) o
Mantle ) Crustal Reeyeling [New surface pushes lower crust into mantle, including volatiles
% Melt- and @ Mantle convects between “boundary layers”
@ Water-Mediated
Convection Radioisotopes

e (U ® | Melting/freezing affects mantle temp/composition

Thermal Boundary Layer

Geodynamo driven by core convection (if occurring)

Core can solidify if thermodynamically allowed
nner Core? Radioactivity allowed in the core




The Interior: The Thermal/Magnetic/Volatile Evolution of Venus

How did Venus arrive at its current state if it has always had a stagnant lid? Rudy Garcia

>

Stellar Evolution

Liquid core —— Monotonic
Low Melt Damped
—— Liquid core, low melt —— Modern day values

Atmospheric Escape
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Validated model permits many possibilities. We can next apply it to exoplanets.
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The Surface: Ice Coverage of Earth-like Exoplanets 13‘

| J,’ A
Caitlyn Wilhelm

How does ice coverage vary with host star, orbital, and rotational properties?

e
/TN

One dimensional in latitude energy balance model (EBM)

Divide surface into ice, land, sea. Each with heat capacity
\ [ / Parameterize heat diffusion by calibrating to Earth
Sea: Low
Albedo

Land: Medium Albedo




The Surface: Ice Coverage of Earth-like Exoplanets :

How does ice coverage vary with host star, orbital, and rotational properties? ) .
Caitlyn Wilhelm

‘- Ice Free B Ice Belt [ Snowbeall B [ce Caps ‘

Sun-like star; no ice initially
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Incident Radiation Relative to Earth

Ice: High Albedo [ /
Sea: Low

Albedo

Land: Medium Albedo
30 40 50 60 70 80 90

Axial Tilt (degrees) (wilhelm et al. 2022)

Planet formation favors 90° obliquity — ice belts twice as likely as ice caps
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The Planetary System: Orbital Evolution in a Resonance @

How extreme can the evolution of planetary orbits be? Me!

Earth-mass + Neptune-mass Planets

Earth orbits a Solar-mass star with 1 year orbit

The Neptune planet’s orbit is 3 years

This is a 3:1 mean motion resonance

NS

Not to scale ¥

e - Assign them some eccentricity and inclinations

Compute the gravitational forces between them




The Planetary System: Orbital Evolution in a Resonance

How extreme can the evolution of planetary orbits be?

—io | $ |
0.25 05 0.75 0O 45 90 135
Eccentricity Inclination (°)

Barnes et al. (2015)

Not to scale

This motion is stable for 10 billion years.
Mean motion resonances in inclined systems can produce the most extreme orbital evolution possible.
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The Star: The Luminosity of TRAPPIST-1 é

How does the brightness of low mass stars change with time? -

Rodrigo Luger

At first, Trappist-1 Small stars take a long time to build the central
' pressure necessary for fusion

is big and bright
. Over time, their radii shrink at constant
. temperature
Slowly it contracts
and dims Smaller surface area -> lower luminosity
® The habitable zone moves inwards

After 1.5 Byr,
it is 100x dimmer




The Star: The Luminosity of TRAPPIST-1 §

How does the brightness of low mass stars change with time? -

Time: 0 Myr Rodrigo Luger

At first, Trappist-1
is big and bright

Slowly it contracts

and dims g
8
® :
%
After 1.5 Byr, , , , , 3
h o s 0.00 0.02 0.04 0.06 0.08 0.10
it is 100x dimmer Distance from Trappist-1 (AU)

Can planets be habitable after hundreds of millions of years in a runaway greenhouse?
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7o)
Introducing alabi: Active Learning for Accurate Bayesian Inference § &

r

A machine learning approach for deriving posteriors

The code derives a “surrogate model” via Gaussian processes

Then uses Markov chain Monte Carlo with this surrogate model to infer posteriors

alabi then identifies where the surrogate model has high likelihood and high uncertainty
Then performs a new VPLanet simulation there, rebuilds the surrogate model, recomputes posteriors
Iterates until three consecutive posteriors are the same, i.e. within a tolerance parameter

Jessica Birky

MCMC (emcee)

A 5 parameter model for TRAPPIST-1's XUV evolution
Posteriors differ by ~3% (within sampling error)

alabi is 1000x more efficient than MCMC (in this case)
Now working to extend to higher dimensional problems

https:/ / github.com /jbirky/alabi

Fleming et al. (2020)
Updated in Birky et al. (2021)




Water Loss + Uncertainties for the TRAPPIST-1 Planets ?

Combine stellar posteriors with planetary posteriors to model photolysis+escape Megan Gialluca
Consider the star and planets with a pure water atmosphere
Simulate in batches of 500 until the water content distributions for all planets converge

Stellar Posteriors Planetary Posteriors HYDRODYNAMIC
o (Birky et al. 2021) (Agol et al. 2021)

ESCAPE

Water Lost [TO]

B B
S b Ay
AT e g

40N NIRRT e T R
¥ y vi. %

L ;

75 100 125
Initial Water [TO]

Gialluca et al., in prep.

If the HZ planets formed with <3-5 TO, they are totally desiccated
More likely is that they lost 8.1+0.9 (planet e), 4.9+£0.4 (f), 3.410.3 (g) and 0.840.1 (h) Earth oceans

For this simple model! Future work will include interior, orbits, etc.




Summary

VPLanet is a single code that can simulate many planetary processes
- Flares can removes up to 2 TO of water (Amaral et al., 2022)
- Ice belts are probably twice as common than ice caps (Wilhelm et al., 2022)
- Resonances with high inclination can be chaotic with high amplitude (Barnes et al., 2015)
- Stellar evolution of low mass stars can desiccate terrestrial planets (Luger & Barnes, 2015)
- Whole planet thermal /magnetic/volatile model of Venus (Garcia et al., submitted)

Machine learning enables quantifying uncertainties in the probability of liquid water
- TRAPPIST-1’s XUV flux has been constrained with alabi (Birky et al., 2021)
- Can compute likelihood that water survived the pre-main sequences (Gialluca et al., 2024)




